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An existence theorem for localized stationary vortex solutions in an external shear
flow is proved. The flow is three-dimensional and quasi-geostrophic in an unbounded
domain. The external flow is unidirectional, with linear horizontal and vertical shear.
The flow conserves an infinite family of Casimir integrals. Flows that have the
same value of all Casimir integrals are called isovortical flows, and the potential
vorticity (PV) fields of isovortical flows are stratified rearrangements of one another.
The theorem guarantees the existence of a maximum-energy flow in any family of
isovortical flows that satisfies the following conditions: the PV-anomaly must have
compact support, it must have the same sign everywhere, and this sign must be the
same as the sign of the external horizontal shear over the vertical interval to which
the support of the PV-anomaly is confined. This flow represents a stationary and
localized vortex, and the maximum-energy property implies that the vortex is stable.
The PV-anomaly decreases monotonically outward from the vortex centre in each
horizontal plane, but apart from this the profile is arbitrary.

1. Introduction
Coherent vortices are common in most large-scale geophysical flows, particularly in

regions of strong shear. In such regions, the vorticity anomaly of the vortices almost
invariably has the same sign as the shear of the background flow (‘cooperative shear’).
Many examples of this are given by the long-lived vortices found in the zonal flow
on the giant planets.

It has also been demonstrated in many laboratory experiments and numerical
simulations that such vortices can be generated by shear flow instabilities, and that
they have a long life-time (sometimes infinite), maintaining themselves by merger
with smaller vortices of the same sign. Vortices in ‘adverse shear’ (i.e. with opposite
signs of the background shear and the vorticity anomaly), on the other hand, are
rarely seen in real flows or numerical simulations. Yet there exist theoretical solutions
describing stationary and linearly stable vortices in adverse shear (Moore & Saffman
1971). In these explicit solutions, however, the background shear is much smaller than
the vorticity anomaly.

One explanation of the difference between cooperative and adverse shear is provided
by the existence theorem of Nycander (1995) for two-dimensional flow. This theorem
states that in every family of ‘isovortical flows’ (to be defined below) that consists of
a background linear shear flow and a compact region of additional vorticity with the
same sign as the background shear, there exists a maximum-energy flow, representing
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a localized and stationary vortex. The vorticity decreases monotonically outward from
the vortex centre (assuming that the shear and the vorticity anomaly are positive).
Such a vortex is a maximum-energy state, which guarantees that it is stable both
linearly and (albeit in an informal sense) nonlinearly. Nothing could be proved about
the existence of a stationary vortex in adverse shear, but it is clear from the proof
that if such a solution exists, it corresponds to a saddle point of the energy. It can
therefore be expected to be unstable, at least nonlinearly.

Another explanation is that a stationary vortex in cooperative shear is a ‘maxi-
mum entropy state’, according to the statistical-mechanical theory of Miller (1990)
and Robert & Sommeria (1991). However, the underlying mathematical structure
explaining this is again the fact that it is also a maximum-energy state.

These theories apply to ideal two-dimensional flow governed by the Euler equation,
which is a highly simplified model of geophysical flows. In the present paper we extend
the existence theorem of Nycander (1995) to three-dimensional quasi-geostrophic flow,
which is a more realistic model. In this model the stream function for the horizontal
velocity field is obtained from the potential vorticity (PV) field by inversion of a
three-dimensional linear elliptic operator. The PV is a Lagrangian invariant (i.e. it
is conserved along fluid trajectories), which implies the conservation of an infinite
family of Casimir integrals (whose integrands are functions of z and the PV). Flows
that have the same value of all Casimirs are called isovortical flows. We also call the
PV-fields of such isovortical flows stratified rearrangements of each other. A stratified
rearrangement may be generated by a horizontal incompressible deformation of the
PV-field that preserves the area inside any contour line of PV at any fixed height
level. This is illustrated in figure 1.

We assume the background flow to be unidirectional, with linear horizontal and
vertical shear. We then superimpose on this flow a compact region of additional
PV (‘PV-anomaly’), with the same sign as the background horizontal shear. We will
prove that in the set of stratified rearrangements of such a given flow, there exists a
maximum-energy flow. This energy maximizer is a localized stationary vortex. As in
the case of two-dimensional flows, the fact that this flow maximizes the energy also
implies that it is stable (in the context of the quasi-geostrophic model).

Usually, the three-dimensional quasi-geostrophic equation is studied in a domain
which is bounded vertically. However, we have not been able to prove the existence
theorem for this case, and instead assume that there are no boundaries. Effectively, this
means that we study vortices that are small compared to the height of the atmosphere
or the ocean. The difficulty with the bounded case appears to be technical, and we
believe that the corresponding theorem is valid for that case as well.

The article is organized as follows. In § 2 the basic equations and invariants are
given, and a simple heuristic argument for the existence theorem is presented. In § 3
we present the notation and the central theorem to be proved (Theorem 1), and also
give an outline of the proof. Section 4 contains some basic theory and inequalities
concerning rearrangements, and some theory of convex sets. In § 5 we prove some
inequalities that are needed later to prove that the energy maximizer has finite extent.
Section 6 contains the proof of Theorem 1. In § 7 we discuss possible generalizations
of the theory and its relation to recent numerical simulations of three-dimensional
quasi-geostrophic turbulence. The Appendix contains extensions of some standard
results on spaces of rearrangements to the stratified case; these are needed for the
proof of Theorem 1.
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z = const.

PV = const.

(a)

(b)

Figure 1. Illustration of a stratified rearrangement. In (a) a cylindrical region of positive PV-anomaly
is shown. The heavy curves depict two surfaces of constant PV, and the intersection between these
surfaces and two planes z = const. The arrows show the background flow: a unidirectional flow
with linear shear. In (b) the PV field has been deformed in such a way that the area inside any
curve PV = const. on any plane z = const. is kept constant. Hence it is a stratified rearrangement
of the field in (a). Theorem 1 proves that it is possible to find a steady vortex solution in the given
background flow by such a deformation. In the stationary solution in (b), but not in (a), the curves
PV = const, z = const. are also streamlines. Note that the vortex is more elongated where the
background shear is stronger. The dotted curves in (b) denote the separatrix.

2. Basic equations and heuristic argument
Three-dimensional quasi-geostrophic flow is described by the equation (Pedlosky

1987)

d

dt

[
∆⊥p+

∂

∂z

(
f2

N2

∂p

∂z

)]
= 0,

d

dt
=

∂

∂t
+ vg · ∇,

 , (1)

where ∆⊥ = ∂2/∂x2 + ∂2/∂y2, p is the pressure, vg = ρ−1ẑ × ∇p is the geostrophic
velocity, and the quantity in square brackets is the potential vorticity (PV), which
is a Lagrangian invariant of the flow, advected by the velocity vg . Physically, the
PV is conserved on isentropic surfaces rather than on height surfaces, but in the
quasi-geostrophic limit they coincide, since the vertical motion is neglected.

We assume that the domain of the flow is infinite in all directions. The existence of
solutions of (1) for the vertically bounded case, with suitable boundary conditions at
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z = 0 and z = H , was proved by Bourgeois & Beale (1994). They also showed that
solutions of the primitive equations converge to quasi-geostrophic solutions in the
limit of small Rossby number, provided that the primitive equations are initialized so
that fast solutions are suppressed.

We will neglect the latitudinal dependence of the Coriolis parameter f. For sim-
plicity, we will also assume the buoyancy frequency N to be constant, which does not
principally alter the character of the problem. With these assumptions, equation (1)
can be written

∂

∂t
∆Ψ + J(∆Ψ,Ψ ) = 0, (2)

where ∆ is the three-dimensional Laplacian, the Jacobian is defined by J(f, g) =
∂xf∂yg − ∂yf∂xg, Ψ is the stream function, the flow being given by v = ∇Ψ × ẑ,
and −∆Ψ is the PV. The dimensionless variables have been chosen so that the ratio
between the vertical and horizontal length scales is f/N.

We now assume that the background flow is given by V = −2y(c0 + c1z)x̂, corre-
sponding to the stream function −(c0 + c1z)y

2 and the PV 2(c0 + c1z). Here c0 and c1

are arbitrary constants. This represents a unidirectional flow, with linear horizontal
and vertical shear. Decomposing the total stream function as Ψ = −(c0 + c1z)y

2 +ψ,
equation (2) can be written

∂

∂t
∆ψ + J

(
∆ψ,−(c0 + c1z)y

2 + ψ
)

= 0, (3)

which is the equation we will study in what follows. The PV-anomaly q = −∆ψ is
assumed to have compact support.

Equation (3) conserves the total energy,

E(q) = W (q)− J(q), (4)

where

W (q) =
1

8π

∫
R3

∫
R3

q(r)q(r′)
|r − r′| dr dr′,

J(q) =

∫
R3

(c0 + c1z)y
2q(r)dr.

We call W the perturbation energy, since it is quadratic in the vortex PV-anomaly q.
Note that W is not conserved by the flow.

Equation (3) further conserves the infinite family of Casimir integrals,

CF =

∫
R3

F(z, q)dr,

where F is an arbitrary function of both arguments. We call PV-fields q(r) that
have the same value of all Casimirs stratified rearrangements of each other. (A
mathematical definition is given in § 3.1.) We may think of the mapping between two
stratified rearrangements as a horizontal incompressible deformation that preserves
the area inside any contour line of q at any fixed value of z (although slightly more
general rearrangements are possible). The corresponding flows are called isovortical.

Stationary solutions of equation (3) are given by J(∆ψ,Ψ ) = 0, which expresses a
functional dependence between ∆ψ and Ψ . They can also be obtained formally from
the following variational property. A general isovortical first-order perturbation of a
given PV-field q (i.e. one satisfying δCF = 0 for any F) is given by δq = J(ξ, q), where
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ξ(r) is arbitrary. The variation of the energy caused by such a perturbation is δE =
− ∫ ΨJ(ξ, q)dr = − ∫ ξJ(q,Ψ )dr. Hence, if δE = 0 for any ξ, then J(∆ψ,Ψ ) ≡ 0. In
particular, a flow that maximises the energy in the set of all stratified rearrangements
of some given PV-field q must be stationary. The purpose of the present work is to
prove that such an energy maximizer exists, and to give an exact derivation of the
steady-state equation. For the proof to be valid it is necessary that q has the same
sign everywhere, and that this sign is the same as the sign of the external vorticity
2(c0 + c1z) at all height levels where q 6= 0.

We first give a simple intuitive argument. If we change the sign of the expression
(4), it has exactly the same form as the gravitational potential energy of some mass
distribution with the density q. The first term W then represents the interaction energy
between the mass elements, and the second term J the contribution from an external
gravitational field. Arbitrary stratified rearrangements are obtained by displacing the
mass elements horizontally, assuming that the matter in incompressible. No vertical
displacement is allowed.

If c0 = c1 = 0 (i.e. in the absence of external flow) the minimum potential energy
is obviously attained by putting the densest matter at the centre at each height
level z = const. The corresponding flow is an axisymmetric vortex q(r, z), with q
being a monotonic decreasing function of r = (x2 + y2)1/2, and q > 0 everywhere
(or monotonic increasing and q 6 0 everywhere). The functional dependence on
z is determined by the given vertical distribution, and in principle arbitrary. Such
a vortex is trivially stationary, and the present consideration demonstrates that it
is also a maximum-energy flow. This helps explain the tendency toward horizontal
axisymmetrization and vertical alignment of the vortices that has been seen in recent
numerical simulations of three-dimensional quasi-geostrophic turbulence (McWilliams
1989; Viera 1995; Sutyrin, McWilliams & Saravanan 1998). As discussed in § 7, it is
typical for many nonlinear infinite-dimensional systems that conditional extrema of
conserved quantities act as attractors.

For non-zero external flow, the term J(q) in equation (4) means that the matter is
placed in a one-dimensional external potential well, with the minimum at y = 0 if
c0 + c1z is positive. One intuitively expects that a state of minimum potential energy
then still exists, with the densest matter near y = 0. This would correspond to a
vortex with monotonic radial profile of potential vorticity, in this case flattened in the
y-direction, i.e. elongated in the direction of the external flow. Below, we will present
a rigorous proof for this conjecture.

3. Statement of results
3.1. Notation and terminology

Throughout, measure will refer to Lebesgue measure on RN , and will be called area in
dimension 2, or volume in dimension 3. If S ⊂ RN is measurable then |S | will denote
the measure of S .

When f and g are real integrable functions defined on a bounded measurable set
Ω ⊂ RN , we say f is a rearrangement of g if

|{r ∈ Ω: f(r) > s}| = |{r ∈ Ω: g(r) > s}| for all s ∈ R.
A definition of rearrangements on unbounded domains makes most sense for one-
signed functions. We say f: RN → R is admissible if f is measurable, non-negative
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almost everywhere, and satisfies |{r ∈ RN: f(r)>s}|<∞ for all s> 0. Two admissible
functions f and g defined on RN will be called rearrangements of each other if

|{r ∈ RN: f(r) > s}| = |{r ∈ RN: g(r) > s}| for all s > 0.

When f is square-integrable on bounded measurable Ω ⊂ RN , the set of all rear-
rangements of f on Ω is denoted RΩ(f), and the closed convex hull in L2(Ω) of
RΩ(f) is denoted CΩ(f) (and later plays an important technical rôle; see § 4.6 for
the definition). We will frequently omit subscript Ω when the discussion of these and
other concepts is mathematically informal.

Consider a bounded measurable Ω ⊂ R3 and q0 ∈ L2(Ω). Now q0(·, z) is square-
integrable on Ω(z) := {(x, y) ∈ R2: (x, y, z) ∈ Ω} for almost every real z. Hence we
can define

RΩ(q0) = {q ∈ L2(Ω): q(·, z) ∈ RΩ(z)(q0(·, z)) for a.e. real z},
CΩ(q0) = {q ∈ L2(Ω): q(·, z) ∈ CΩ(z)(q0(·, z)) for a.e. real z}

and we refer to elements of RΩ(q0) as stratified rearrangements of q0.
To extend the definition to functions on the unbounded domain R3, for non-

negative functions q, q0 ∈ L2(R3) having compact support, we say q is a stratified
rearrangement of q0 if q(·, z) is a rearrangement of q0(·, z) for almost every real z.

We write points in R3 as r = (x, y, z), r′ = (x′, y′, z′) and so on, abbreviating the
volume element to dr = dx dy dz where convenient. We fix positive constants c0 and
c1. For non-negative q ∈ L2(R3) having compact support, we define

Kq(r) =
1

4π

∫
R3

|r − r′|−1q(r′)dr′ = ψ(r) for all r ∈ R3,

W (q) =
1

2

∫
R3

q(r)Kq(r)dr =
1

2

∫
R3

|∇ψ|2,
where the second form for W (q) follows from the Divergence Theorem, since ψ(r) =
O(|r|−1) and ∇ψ(r) = O(|r|−2) as |r| → ∞.

The energy E = W − J is defined in equation (4). Our main result is the following:

Theorem 1. Let 0 < z0 < z1 and let q0 ∈ L2(R3) be non-negative and have compact
support lying in z0 < z < z1. Let c0 and c1 be positive numbers. Then there exists a
maximizer q̄ for E relative to the stratified rearrangements of q0 on R3, and ψ := Kq̄
satisfies

−∆ψ(x, y, z) = ϕ
(
ψ(x, y, z)− (c0 + c1z)y

2, z
)

a.e. in R3

for some function ϕ: R2 → [0,∞) such that ϕ(·, z) is increasing for almost every real z.

Remark. Moreover q̄ can be assumed doubly Steiner-symmetric; for the definition
see § 4.3.

3.2. Outline of proof of Theorem 1

A complete proof of Theorem 1 will be given in § 6, but since a number of preliminaries
are required, we digress at this stage to explain the strategy, which is modelled on the
plan sketched by Benjamin (1976) in his theory of steady vortex-rings.

The first step is to prove the existence of a maximizer for E relative to the stratified
rearrangements of q0 defined on a bounded box Ω. Here the arguments of Benjamin
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prove difficult to realize in detail, and we follow instead the approach of Burton
(1987a, Theorem 7). A weak compactness argument is employed, but since the set
RΩ(q0) is not weakly compact in general, we extend the class of admissible functions
for our maximization. We work in the set CΩ(q0), which is closed, bounded and
convex in L2(Ω) and therefore weakly compact, in the sense that any sequence in
CΩ(q0) has a sub-sequence converging weakly in L2(Ω) to an element of CΩ(q0). This
weak compactness, together with the weak continuity of the energy E, easily leads to
the existence of an energy maximizer q̄ in the class CΩ(q0). To complete the first step,
we have to show that q̄ in fact belongs to RΩ(q0). To this end, the necessary condition
at the maximizer q̄ is studied, and is found to require that q̄ be the unique maximizer
of a certain linear functional (defined in terms of q̄) relative to CΩ(q0). Lemma 6 (see
the Appendix) shows that the supremum of any bounded linear functional relative
to CΩ(q0) is attained by at least one element of RΩ(q0). Hence q̄ ∈ RΩ(q0). From a
geometric viewpoint, one should think of elements of RΩ(q0) as ‘extreme points’ or
‘vertices’ of CΩ(q0).

The mathematics of this first step is more abstract than in the corresponding
proof for two-dimensional flow by Nycander (1995). In that case the fact that the
maximizer must be symmetric decreasing in x and y could be used to prove that
a maximising sequence of rearrangements is totally bounded, and that the sequence
is therefore strongly convergent. In the present three-dimensional case, however, the
rearrangements in a maximising sequence may oscillate rapidly in z (this is possible
even if they are symmetric decreasing in x and y), and the sequence is therefore not
totally bounded a priori. The weak compactness argument is therefore necessary.

The second step is to show that increasing the size of the confining box Ω indefinitely
does not affect the maximizer, i.e. that the support of the maximizer does not touch
the boundary of the confining box if the latter is large enough.

Since the contribution Kq̄ to the stream function from the vortex vanishes at
infinity, the streamline Ψ = 0 for fixed z comes arbitrarily close to the y-axis for
|x| → ∞. This streamline is therefore a separatrix. Inside it the streamlines are closed,
and outside they are open. (This is an important difference between the present
case and the two-dimensional problem treated by Nycander 1995.) In that case
the vortex contribution to the stream function diverges logarithmically at infinity.
There is therefore no separatrix, and all streamlines are closed. The same is true for
three-dimensional quasi-geostrophic flow in a domain which is bounded vertically.)

From the far-field behaviour of Ψ it is possible to show that the area inside the
separatrix at any fixed z is unbounded (i.e. that it can be made arbitrarily large
by increasing the size of the box, cf. Lemma 4 in § 5). To estimate the far-field
behaviour we first show that the maximizer must have positive energy, cf. Lemma
1 in § 5, and that as a consequence of this the volume of its support must be finite
in some finite box, cf. Lemma 3 in § 5. Together with the necessary condition for
a maximum, which says that q̄ is an increasing function of the stream function
Ψ := Kq̄ − (c0 + c1z)y

2 for (almost every) fixed z, the unbounded area inside the
separatrix implies that the support of the maximizer lies entirely in the interior of the
box, if the latter is large enough. (Lemma 2 in § 5 is used to give an upper estimate
of the necessary size of the box.) Hence, if we choose Ω large enough for fixed q0,
the maximizer q̄ is also a maximizer for all larger domains Ω, thus completing the
proof.

Noteworthy features of the method are that no smoothness of q0 is assumed (hence
vortex patches can be treated), and that the variations performed in deriving the
steady-state equation are exact rather than first-order approximations.
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4. Rearrangements, inequalities, and convexity
The set of rearrangements of a function plays a role in this paper dictated by the

physical considerations explained in § 1; it has nevertheless been an object of study
in pure mathematics independently. Some parts of the resulting theory are presented
here (without proofs) because they are needed in the proof of Theorem 1. Certain
properties of the set of stratified rearrangements are deferred until the Appendix,
since these are not standard and proofs must be given.

Because of the use of the convex set C(q0) in the proof of Theorem 1, we also
give some theory of convex sets and weak convergence. Physically, one may view the
elements of C(q0) as reflecting ‘limiting’ or ‘averaged’ properties of finely filamented
(stratified) rearrangements of q0; the good convergence properties of the Lebesgue
integral ensure the existence of the required limits.

4.1. General properties

If f is integrable on a bounded measurable Ω ⊂ RN , and g is a rearrangement of f
on Ω, then g is integrable on Ω and∫

Ω

f =

∫
Ω

g.

If f ∈ L2(Ω) and g ∈ RΩ(f) then g2 is a rearrangement of f2 and therefore ‖g‖2 =
‖f‖2. The convexity of ‖ · ‖2 now ensures ‖g‖2 6 ‖f‖2 for all g ∈ CΩ(f).

Consequently, if q0 ∈ L2(Ω) for bounded measurable Ω ⊂ R3 then ‖q‖2 = ‖q0‖2

for all q ∈ RΩ(q0), and ‖q‖2 6 ‖q0‖2 for all q ∈ CΩ(q0).

4.2. Increasing rearrangements

Any real integrable function f defined on a bounded measurable set Ω ⊂ RN has an
increasing rearrangement f∗ defined on the interval (0, m) where m is the measure of
Ω, which is an increasing function satisfying

|{ξ ∈ (0, m): f∗(ξ) > s}| = |{r ∈ Ω: f(r) > s}| for all s > 0.

Then f∗ is uniquely defined except for the values at its discontinuities.
If f, g ∈ L2(Ω), then the inequality∫

Ω

fg 6

∫ m

0

f∗g∗ (5)

is classical; for a proof see for example Theorem 1 of Burton (1987a). From it may
be deduced the inequality∫

Θ

f >

∫ θ

0

f∗ for Θ ⊂ Ω measurable, θ = |Θ| (6)

by setting g(t) = −1 if t ∈ Θ, and g(t) = 0 if t ∈ Ω \Θ.
Ryff (1965, Lemma 2), showed that any integrable function on an interval can

be expressed as the composition of its increasing rearrangement with a measure-
preserving transformation; see our Lemma 5 in the Appendix for further explanation.

4.3. Steiner-symmetrization

Any integrable function f defined on a symmetric interval (−s, s) ⊂ R has a symmetric
decreasing rearrangement f4, that is a rearrangement as an even function on (−s, s),
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decreasing on (0, s). The inequality analogous to (5) holds for symmetric decreasing
rearrangements, that is,∫ s

−s
fg 6

∫ s

−s
f4g4 for all f, g ∈ L2(−s, s). (7)

If now S := (−s, s) × (−s, s) × (−s, s) denotes a cube in R3 and f ∈ L1(S), then
f(·, y, z) is an integrable function on (−s, s) for almost every (y, z) in the square
Q := (−s, s) × (−s, s); the Steiner-symmetrization fs of f in the x-direction is defined
to be such that fs(·, y, z) is the symmetric decreasing rearrangement of f(·, y, z) for
almost every (y, z) ∈ Q. From (7) we deduce∫

S

fg 6

∫
S

fsgs for all f, g ∈ L2(S). (8)

Steiner-symmetrization in the y-direction is similarly defined (we will not need it
in the z-direction). A function that is invariant under Steiner-symmetrization in both
the x- and y-directions will be called doubly Steiner-symmetric. The two operations
of Steiner-symmetrization in the x- and y-directions do not commute. If however a
function f is subjected to Steiner-symmetrization in both the x- and y-directions (in
either order), the resulting rearrangement of f is doubly Steiner-symmetric.

4.4. Riesz’s inequality

The notion of Steiner-symmetrization extends to certain non-negative functions on
the whole of R3. Any function f that is admissible (in the sense of § 3.1) admits
Steiner-symmetrizations; if fs denotes its Steiner-symmetrization in the x-direction,
then for almost every (y, z) ∈ R2 the function fs(·, y, z) is the symmetric decreasing
rearrangement of f(·, y, z). If f, g and h are admissible functions then a variant of
Riesz’s inequality asserts that∫

R3

∫
R3

f(r)g(r − r′)h(r′)dr dr′ 6
∫
R3

∫
R3

fs(r)gs(r − r′)hs(r′)dr dr′, (9)

where either side may be infinite. For a proof of (9), see Lieb & Loss (1997, Theorem
3.6). Clearly the above remarks apply also to Steiner-symmetrization in the y-direction.

4.5. Consequences for energy functionals

Suppose q ∈ L2(R3) is non-negative and has compact support. It follows from Riesz’s
inequality (9) that Steiner-symmetrization in either the x- or y-direction does not
reduce W (q) in (4). Steiner-symmetrization in the x-direction leaves J(q) unchanged,
whereas inequality (8) ensures that Steiner-symmetrization in the y-direction does not
increase J(q).

Consequently E(q) is not reduced by Steiner-symmetrization in either the x- or
y-directions. Thus q has a doubly Steiner-symmetric rearrangement q̄ satisfying
E(q̄) > E(q), i.e. the energy maximizer must be Steiner-symmetric.

4.6. Convex sets and weak convergence

As remarked in § 3.2, the solution for our variational problem on a bounded domain
is obtained as a weak limit of a maximising sequence. However the sets R(q0) and
R(q0) are not in general weakly closed, so we may violate the constraints of the
variational problem in passing to the weak limit. A first step towards overcoming
this difficulty is to extend the constraint set. Therefore the sets C(q0) and C(q0) are
introduced because, as we explain below, closed convex sets behave well under weak
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convergence. With these considerations in mind, we review here some of the essentials
of convex analysis, in the context of the Hilbert space L2(Ω), where Ω is a measurable
subset of RN .

A set C ⊂ L2(Ω) is called convex if C contains the straight line-segment joining
each pair of its points. A convex set also contains all convex combinations of its points,
i.e. the (finite) linear combinations whose coefficients are non-negative and sum to
1. The closed convex hull of a set S ⊂ L2(Ω) is the intersection of all the (strongly)
closed convex sets that contain S . If M > 0 and ‖x‖2 6 M for all x ∈ S , then the
same inequality holds for all x lying in the closed convex hull of S . Hence the closed
convex hull of a bounded set is also bounded.

Recall that a sequence {fn}∞n=1 in L2(Ω) converges weakly to f ∈ L2(Ω) if∫
Ω

fng →
∫
Ω

fg as n→∞, for all g ∈ L2(Ω).

The following one-dimensional example is illuminating: define fn(ξ) = sin 2πnξ for
ξ ∈ (0, 1). The fn are all rearrangements of each other, and fn → 0 weakly as n→∞.
In this case the weak limit is not a rearrangement. This construction therefore shows
that the set of rearrangements of f1 is not weakly closed in L2(0, 1).

Every closed convex set in L2(Ω) contains the weak limits of all its weakly conver-
gent sequences; this follows from Theorem 2.13 of Lieb & Loss (1997) for example.
Thus a simple way to extend a set in L2(Ω) to make it weakly closed, is to take its
closed convex hull.

The existence of a weak limit for a maximising sequence of our variational problem
uses a weak compactness argument. By contrast with the finite-dimensional situation, a
bounded sequence in the infinite-dimensional space L2(Ω) need not have a convergent
sub-sequence. Indeed the functions fn considered above illustrate this point, since
||fn||2 = 1/

√
2 for every n, and ||fm − fn||2 = 1 for m 6= n. However, every bounded

sequence in L2(Ω) does have a sub-sequence converging weakly to some point of
L2(Ω); see for example Theorem 2.18 of Lieb & Loss (1997). It follows that if
C ⊂ L2(Ω) is closed, convex and bounded, then every sequence in C has a sub-
sequence converging weakly to an element of C . This observation will allow us
to prove the existence of an energy maximizer in the set CΩ(q0) introduced in
§ 3.1.

The functions in C(q0) may be regarded as limits of PV-fields in R(q0), taking the
limit of highly filamented or vertically oscillating fields in a ‘coarse-grained’ sense (i.e.
performing a local averaging of the PV-field), as in the statistical theory of Miller
(1990) and Robert & Sommeria (1991). For our purposes, it is necessary that the
energy maximizer in C(q0) in fact belongs to R(q0), i.e. that it is a true rearrangement
of q0 and not one of the ‘coarse-grained’ fields. This is shown with the help of Lemma
6 in the Appendix, and is a manifestation of the status of R(q0) as a set of ‘vertices’
of C(q0).

5. Preliminary estimates
We now perform some calculations of the energy and stream-function due to a

stratified rearrangement of q0 that will be used in the proof of Theorem 1.

Lemma 1. Let q0 ∈ L2(R3) be non-negative and have compact support. Then some
stratified rearrangement q of q0 with compact support satisfies E(q) > 0.
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Proof. Consider the rearrangement q of q0 defined by q(x, y, z) = q0(αx, α
−1y, z)

where 0 < α 6 1. We make a linear change of variable to obtain

W (q) =
1

8π

∫
R3

∫
R3

q0(αx, α
−1y, z)q0(αx

′, α−1y′, z′)dr dr′

((x− x′)2 + (y − y′)2 + (z − z′)2)1/2

=
1

8π

∫
R3

∫
R3

q0(x, y, z)q0(x
′, y′, z′)dr dr′

(α−2(x− x′)2 + α2(y − y′)2 + (z − z′)2)1/2

=
α

8π

∫
R3

∫
R3

q0(x, y, z)q0(x
′, y′, z′)dr dr′

((x− x′)2 + α4(y − y′)2 + α2(z − z′)2)1/2
> αW (q0),

and

J(q) =

∫
R3

(c0 + c1z)y
2q0(αx, α

−1y, z)dr

=

∫
R3

(c0 + c1z)(αy)2q0(x, y, z)dr = α2J(q0),

whence E(q) > αW (q0)− α2J(q0) > 0 for sufficiently small α. �

Remark. The next lemma is adapted from Burton (1987b Lemma 4), and its proof
makes use of the observation that if f is a non-negative decreasing function on (0,∞),
then for 0 < α < x we have ∫ x

x−α
f 6

α

x

∫ x

0

f, (10)

which is easily proved by a linear change of variables.

Lemma 2. Let q0 ∈ L2(R3) be non-negative and have compact support. Then there is
a positive constant C (depending on q0 only) such that

Kq(x, y, z) 6 C(x2 + y2)−1/6 whenever x2 + y2 > 2,

for every doubly Steiner-symmetric stratified rearrangement q of q0.

Proof. Let ρ be the radius of the ball having the same volume as the set {r′ ∈
R3: q0(r

′) > 0}. Let r = (x, y, z) and suppose x2 + y2 = 2a2 where a > 1. Then |x| > a
or |y| > a; without loss of generality we assume x > a. Let 0 < b < a. Fix a doubly
Steiner-symmetric stratified rearrangement q of q0. Then

Kq(r) =
1

4π

∫
R3

q(r′)dr′

|r′ − r|
=

1

4π

(∫
|x′−x|>b

+

∫
|x′−x|<b

)
q(r′)dr′

|r′ − r|

6
1

4πb

∫
R3

q +
1

4π

(∫
q(r′)>0

dr′

|r′ − r|2
)1/2(∫

|x′−x|<b
q2(r′)dr′

)1/2

6
1

4πb

∫
R3

q +
1

4π

(∫
|r′−r|<ρ

dr′

|r′ − r|2
)1/2(

b

x

∫
R3

q2(r′)dr′
)1/2

6
1

4πb
‖q‖1 +

(4πρ)1/2

4π

(
b

a

)1/2

‖q‖2 ,
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where the Steiner-symmetry in x has been used in conjunction with (10) to derive the
penultimate line. We now choose b = a1/3 to obtain

Kq(r) 6 C2−1/6a−1/3 = C(x2 + y2)−1/6,

for some positive constant C depending only on q0. �

Lemma 3. Let q0 ∈ L2(R3) be non-negative and have compact support. Let a and
γ be positive numbers. Then there is a positive number β such that for every stratified
rearrangement q of q0 satisfying E(q) > γ, there is a cube A of side a for which

|{r′ ∈ A: q(r′) > 0}| > β.

Proof. Consider a positive number β, and suppose there exists a stratified rear-
rangement q of q0 such that E(q) > γ, but

|{r′ ∈ A: q(r′) > 0}| < β

for every cube A of side a. We show that for a sufficiently small choice of β this leads
to a contradiction. Let ρ denote the radius of the ball of volume β.

Fix r ∈ R3 and let X denote a cube with centre r and side na, where n is a positive
integer to be chosen later. Then X can be covered by cubes A(1), . . . , A(n3) of side a.
Hence

Kq(r) =
1

4π

 n3∑
i=1

∫
A(i)

+

∫
R3\X

 q(r′)dr′

|r′ − r|

6
1

4π

n3∑
i=1

(∫
A(i)

q2(r′)dr′
)1/2(∫

r′∈A(i), q(r′)>0

dr′

|r′ − r|2
)1/2

+
2

4πna

∫
R3\X

q(r′)dr′

6
n3

4π

(∫
R3

q2(r′)dr′
)1/2(∫

|r′−r|<ρ
dr′

|r′ − r|2
)1/2

+
2

4πna

∫
R3

q(r′)dr′

= n3ρ1/2(4π)−1/2‖q‖2 + 2(4πna)−1‖q‖1.

Consequently

W (q) =
1

2

∫
R3

∫
R3

q(r)Kq(r′)dr dr′ 6 2−2n3π−1/2ρ1/2‖q‖2‖q‖1 + (4πna)−1‖q‖2
1.

We now choose n large enough to ensure (4πna)−1‖q0‖2
1 < γ/2 and then choose

β (and therefore ρ) small enough to ensure 2−2n3π−1/2ρ1/2‖q0‖2‖q0‖1 < γ/2, choices
that depend on a, γ and q0 but not on the particular rearrangement q. We find that
E(q) 6W (q) < γ, and this contradiction shows that β has the desired properties. �

Lemma 4. Let q0 ∈ L2(R3) be non-negative and vanish outside a cube of side α and
centre o. Let a, β be positive numbers, a < α. Then there is a positive number δ such
that, if q is any doubly Steiner-symmetric stratified rearrangement of q0 satisfying

|{r′ ∈ A: q(r′) > 0}| > β (11)

for some cube A of side a, then

|{(x, y) ∈ R2: Kq(x, y, z)− (c0 + c1z)y
2 > δ}| > α2 for all z ∈ [−α, α].
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Proof. Consider a cube A of side a and a doubly Steiner-symmetric stratified
rearrangement q of q0 satisfying (11). Since q0(x, y, z) vanishes when |z| > α, there
is no loss of generality in assuming A lies in the region defined by −α < z < α.
Moreover, the symmetry of q ensures that symmetrizing A in the x- and y-directions
does not reduce the volume in (11); we may therefore assume A is centred on the
z-axis.

Suppose r = (x, y, z) with |z| < α. Then, using (6),

Kq(r) >
1

4π

∫
A

q(r′)dr′

|r′ − r|

>
1

4π
((|x|+ a)2 + (|y|+ a)2 + 4α2)−1/2

∫
A

q(r′)dr′

>
1

8π
(x2 + y2)−1/2

∫ β

0

q∗0 =: κ(x2 + y2)−1/2

say, provided that (x2 + y2)1/2 > ξ := (2a2 + 4α2)1/2, where ∗ denotes increasing
rearrangement onto the real interval (0, v) with v = |{r′ ∈ R3: q0(r

′) > 0}|. Therefore

Kq(r)− (c0 + c1α)y
2 > κ(x2 + y2)−1/2 − (c0 + c1α)y

2

whenever (x2 + y2)−1/2 > ξ. Now the planar region defined by the inequality

κ(x2 + y2)−1/2 − (c0 + c1α)y
2 > 0

has infinite area, because it contains the region of infinite area defined by the
inequalities

0 < y < x, y < κ1/22−1/2(c0 + c1α)
−1/2x−1/2.

We can therefore choose δ > 0 such that the region defined by

κ(x2 + y2)−1/2 − (c0 + c1α)y
2 > δ, x2 + y2 > ξ2

has area at least α2. Then

|{(x, y): Kq(x, y, z)− (c0 + c1z)y
2 > δ}| > α2

for |z| < α, where δ > 0 depends on q0 but not on q. �

6. Proof of Theorem 1
In this section we give a rigorous proof of our main existence theorem, using the

results proved in Lemmas 1–7. (Lemmas 5–7 are in the Appendix.) The main ideas
of the proof are described in § 3.2.

Consider a rectangular domain Ω = Q× I where Q is a square centred at the origin
in the (x, y)-plane and I = [z0, z1]. Choose α > 2z1 so that if Q has side at least α then
Ω contains the support of q0, and define

e = sup {E(q): q ∈ CΩ(q0)}.
Let {qn}∞n=1 be a maximizing sequence, that is, a sequence in CΩ(q0) for which
E(qn)→ e. Now CΩ(q0) is a bounded set in the Hilbert space L2(Ω), hence {qn}∞n=1 has
a subsequence {qnj}∞j=1 that converges weakly to some limit q̄ ∈ L2(Ω). Since CΩ(q0)
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is closed and convex, q̄ ∈ CΩ(q0). The compactness of K as a linear operator on
L2(Ω) (which follows from the square-integrability of |r − r′|−1 over Ω × Ω) ensures
that Kqnj → Kq̄ strongly in L2(Ω), hence E(qnj ) → E(q̄) as j → ∞, and therefore
E(q̄) = e. This proves the existence of a maximizer q̄ of E relative to the extended
class of functions CΩ(q0).

To derive the first-variation condition satisfied by q̄, we use the strict convexity of
E. Consider any q ∈ CΩ(q0), q 6= q̄. Then we have

E(q̄) > E(q) = E(q̄) +

∫
Ω

(q(r)− q̄(r))(Kq̄(r)− (c0 + c1z)y
2)dr +W (q − q̄)

> E(q̄) +

∫
Ω

(q − q̄)Ψ,

where Ψ (r) = Kq̄(r)− (c0 + c1z)y
2, hence∫
Ω

qΨ <

∫
Ω

q̄Ψ.

This shows that q̄ is the unique maximizer relative to CΩ(q0) of the bounded linear
functional

q 7→
∫
Ω

qΨ.

Since Lemma 6 assures us that the supremum of any bounded linear functional relative
to CΩ(q0) is attained by at least one element of RΩ(q0) we can deduce that q̄ ∈ RΩ(q0).
Lemma 7 provides a function ϕ: R2 → [0,∞) such that q̄(x, y, z) = ϕ (Ψ (x, y, z), z)
almost everywhere in Ω, and ϕ(·, z) is increasing for almost every z. Thus, our
maximizer relative to the extended set of functions CΩ(q0) turns out to be a stratified
rearrangement, and is an increasing function of Ψ for almost every fixed z.

The above argument was conducted on a bounded domain Ω = Q × I , and in
principle q̄ could depend on the choice of Q. We now proceed to show that if Q
is chosen large enough, it ceases to have any influence whatever on the problem.
This is achieved using the estimates developed in § 5, which are Q-independent. We
begin by recalling our observation in § 4.5 that Steiner-symmetrization of q in either
the x- or y-directions does not reduce E(q). We therefore assume that q̄ is doubly
Steiner-symmetric.

By Lemma 1 we can choose l > α > 2z1 and γ > 0 such that if Q has side at least l
then e > γ. Next an application of Lemmas 3 and 4 shows that δ > 0 may be chosen,
independent of Q (having side at least l), such that Ψ (·, z) > δ occurs on a set of area
at least α2, for every z ∈ I . Now the estimate of Lemma 2 shows that if (x, y, z) ∈ R3

and Ψ (x, y, z) > δ then x2 + y2 6 max{2, (C/δ)6}, where C is independent of Q. Let

Q0 denote the square whose side is max{√2, l, (C/δ)3}, let Ω0 = Q0×I , and henceforth
assume Q is bigger than Q0. Since, for almost every z ∈ I , the subset of Q where
q̄(·, z) > 0 has area at most α2, and q̄(·, z) is equal almost everywhere in Q to an
increasing function of Ψ (·, z), it follows that q̄(·) is positive only at points of Ω where
Ψ (·) > δ, except for a set of zero volume.

Thus, under our assumption that Q is larger than Q0, it follows that q̄ vanishes
outside Ω0. Hence if we take q̄ to be the maximizer for Ω0, then q̄ maximises E over
all stratified rearrangements of q0, no matter how large their supports may be. The
corresponding ϕ can now be extended so that ϕ(u, z) = 0 if u 6 δ or z /∈ I; then each
ϕ(·, z) is increasing, and q̄ = ϕ(Ψ, z) almost everywhere in R3. �
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7. Discussion
In Theorem 1 we have proved the existence of a stationary vortex solution of

equation (3) in the set of stratified rearrangements of any given PV-anomaly field q0

(i.e. in any family of isovortical flows) that satisfies the following conditions: q0 must
have compact support, it must have the same sign everywhere, and this sign must
be the same as the sign of the background shear 2(c0 + c1z) over the interval in z
to which the support of q0 is confined. If q0 > 0 the PV-field of the maximizer is
symmetric decreasing in x and y for every fixed z (symmetric increasing if q0 6 0).

The fact that a flow maximises the energy implies that it is linearly stable (Nycander
1995). It should also mean that the flow is nonlinearly stable in a practical sense,
as argued by Benjamin (1976). This is analogous to Lyapunov stability for a system
with a finite number of degrees of freedom. However, we cannot formalize this to a
statement of stability in some norm.

In one case the shape of the stationary vortex can be found analytically. If the PV-
anomaly is constant inside an ellipsoidal surface, and vanishes outside this surface,
and if the stream function of the background flow is a quadratic function, then the
discontinuity surface will always remain ellipsoidal, and the general time-dependent
solution can be found (Meacham et al. 1994). Steady solutions of this kind can be
found both in adverse shear and cooperative shear, and the present result suggests
that those in cooperative shear are stable.

One possible generalization of Theorem 1 is to add a term −(d0 + d1z)x
2 to the

stream function of the background flow, which is then a general strain flow. (This can
be a simple model of the flow induced by other vortices in the vicinity, employing a
reference frame in which the strain axes are fixed.) In accordance with the heuristic
argument of § 2, we expect an energy maximizer to exist if this stream function is
sign-definite, i.e. if the origin is an elliptic stagnation point of the background flow. If
the origin is a hyperbolic stagnation point, on the other hand, the external potential
of our heuristic argument has no minimum, and it is clear that no maximizer exists.

This picture agrees very well with the the analysis by Dritschel & Torre Juárez
(1996) of the linear stability of a stationary vortex column (i.e. an elliptic cylinder
with uniform PV-anomaly) in an external strain flow. They find that if the vorticity
of the external flow is larger than or equal to the strain rate, and has the same
sign as the PV-anomaly of the vortex, such a vortex is stable. (This is exactly the
parameter region in which an energy maximizer should exist.) In all other cases the
vortex column is linearly unstable, provided that the height of the atmosphere is large
enough to accommodate the unstable mode.

Dritschel & Torre Juárez (1996) also performed nonlinear simulations of unstable
vortex columns. They found that a freely rotating elliptic vortex column (i.e. without
external flow) either axisymmetrized, while shedding PV-filaments, or performed re-
versible oscillations. In the presence of an external strain field, on the other hand, tall
vortices were disrupted, resulting in compact vortices with an aspect ratio (height to
mean radius) of about 3. The fact that such vortices are disrupted is not surprising,
since they correspond to saddle points of the energy, rather than maximum
points.

Another generalization is to add a constant vertical shear to the background flow
of equation (3). Provided that c1 6= 0, this case can be recovered from equation (3)
by a shift of the coordinate system in the y-direction, plus a Galileian transformation
in the x-direction. In effect, this means that the energy maximizer is a vortex located
at the y-value where the vertical shear vanishes, and travelling with the background
flow velocity at this position.
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In our model we assumed that there are no vertical boundaries. Often, however,
equation (2) is solved with the boundary conditions ∂Ψ/∂z = 0 at z = 0 and z = H .
We believe that the corresponding existence theorem is true for this bounded case
as well, but we have not been able to prove this. The problem is that the energy
functional is not convex in the bounded case. Thus, the theorem proved here is
relevant only for vortices that are small (both vertically and horizontally) compared
to the total height of the atmosphere. Note, however, that the two-dimensional case
may be considered as the opposite limit, with the vortex occupying the whole height
of the atmosphere, and the horizontal size much larger than this height, and in this
case the corresponding existence theorem holds (Nycander 1995).

An important difference between the two cases is that a stationary vortex has a
separatrix in the unbounded case considered here, but not in the bounded case. The
reason is that the Green’s function diverges logarithmically at infinity in the bounded
case, while it behaves as 1/|r| in the case considered here.

As shown in Lemma 1, the energy maximizer must have positive energy. This
makes it possible to estimate the amplitude necessary for a stationary vortex to
have approximately spherical shape, as opposed to a strongly elongated shape. If we
assume, for simplicity, that q = q0 = const. inside and q = 0 outside the sphere |r| < a,
and that the background flow is independent of z (i.e. that c1 = 0), it is straightforward
to calculate that the energy is E = (2/15)πq0a

5(2q0− c0). The first term represents the
perturbation energy W and the second term the external contribution J in equation
(4). Hence, if q0 < c0/2 the stationary vortex must be significantly elongated, and is
therefore probably less robust than if q0 > c0/2. (The perturbation energy W can
be thought of as a ‘binding energy’ of the vortex.) This crude estimate is perhaps
supported by the observation in the turbulence simulations by McWilliams (1989)
that coherent vortices emerge in regions where the vorticity is larger than the local
strain rate.

The realization that stable vortices are maximum energy states can be an important
tool for the intuitive thinking about vortex dynamics, apart from its role in the
present existence proof. For instance, numerical simulations of three-dimensional
quasi-geostrophic flow have revealed a tendency for vortices to align vertically (if
they have the same sign) and to axisymmetrize horizontally (McWilliams 1989; Viera
1995; Sutyrin et al. 1996). Both these processes can be interpreted as a tendency to
approach the maximum energy state, which is a vertically aligned axisymmetric vortex
(in the absence of background flow).

It is typical for many nonlinear infinite-dimensional systems that conditional ex-
trema of conserved quantities act as attractors in this way. In dissipative systems this
is often interpreted as a ‘selective decay’ of the invariants. In the ideal model used
here, the conservation of PV and energy of course prevents an unsteady flow from
evolving into a maximum-energy state. However, the excitation of small scales (i.e.
filamentation of the PV-field) can effectively act like dissipation, and in a course-
grained sense move the flow to a different isovortical family where it is close to a
maximum-energy state. (We note that this process still keeps the PV-field in the same
closed convex hull, the set C(q0) discussed in § 3.1 and § 4.6.) This is the basic idea be-
hind the statistical mechanical theory for ideal two-dimensional flow of Miller (1990)
and Robert & Sommeria (1991). It seems likely that this theory can be generalized to
the model studied in the present article.

The vertical alignment and horizontal axisymmetrization are irreversible, nonlinear
processes. However, it has also been observed in simulations that columns of uniform
PV can perform a reversible and almost periodic motion (Viera 1995; Sutyrin et
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al. 1996; Dritschel & Ambaum 1997). This may be interpreted as a large-amplitude
extension of a linear wave on the axisymmetric stationary state. The dispersion
relation for the linear waves is ω = mQ(1/2 − Im(ka)Km(ka)), where Q is the PV
and a the radius of the column, Im and Km modified Bessel functions, and m and
k the azimuthal and vertical wavenumbers, respectively. The nonlinear, irreversible
behaviour sets in only if the wave amplitude (i.e. the deviation from the axisymmetric
state) is large enough, as studied in detail by Sutyrin et al. (1996).

We caution, however, that a column of uniform PV can probably tolerate oscil-
lations of larger amplitude before the nonlinear behaviour sets in than smoother
vortices, as is the case in two-dimensional flow (Dritschel 1998). If, for example, the
PV of the vortex column is a strictly decreasing (or strictly increasing) function of
r, no normal modes exist, as can be shown similarly to Appendix B of Åkerstedt,
Nycander & Pavlenko (1996). This means that any infinitesimal perturbation will be
sheared away, and that the vortex approaches axisymmetry as t → ∞ even in the
linear approximation. For two-dimensional flow, a proof of this linear asymptotic
behaviour was recently given by Bassom & Gilbert (1998).

In numerical simulations of three-dimensional quasi-geostrophic turbulence that
use the boundary conditions ∂Ψ/∂z = 0 at z = 0 and z = H , a very clear preference
is seen for coherent vortices to form at the top and at the bottom of the domain
(McWilliams 1989; Dritschel & Ambaum 1997). This can be understood in terms of
the maximum-energy argument employed in the present work. Poisson’s equation can
in this case be solved by introducing mirror vortices outside the boundaries of the
domain, with the same sign as the real vortices. If a vortex touches the boundary
it also touches a mirror vortex, in effect forming a ‘virtual vortex’ twice the size of
the real vortex. The energy is therefore much larger than if the real vortex were
situated in the middle of the domain. This makes vortices at the boundaries more
robust.

The authors are grateful for the hospitality of the Isaac Newton Institute for
Mathematical Sciences, Cambridge, where this research was conducted during the
programme on The Mathematics of Atmosphere and Ocean Dynamics.

Appendix. The space of stratified rearrangements
The proof of Theorem 1 required extensions of some standard results on spaces of

rearrangements to the stratified case. Here we give the details. The issue that arises
is whether the operations we perform at each z-level fit together in a measurable
way. Lemmas 6 and 7 are the stratified counterparts of Theorems 4 and 5 of Burton
(1987a); we have taken the opportunity to simplify the proofs.

We begin with a result that was proved by Ryff (1965, Lemma 2), for functions on
an interval. We omit the proof, since Ryff’s argument carries over to our case with
only a slight modification, concerning level sets having positive area. We indicate the
necessary modification by giving a formula in the statement of Lemma 5.

If Θ ⊂ RN is a bounded measurable set and θ = |Θ|, a map σ: Θ → (0, θ) is
called measure-preserving if |{t ∈ Θ: σ(t) 6 ξ}| = ξ for every 0 < ξ < θ. If σ is a
measure-preserving map then |σ−1(B)| = |B| for every measurable set B ⊂ (0, θ). A
measure-preserving map need not be invertible.

Lemma 5. Let U ⊂ R2 be a bounded measurable set, with |U| = m say, and let f be
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a real integrable function on U. For (x, y) ∈ U define

σ(x, y) = |{(x′, y′) ∈ U: f(x′, y′) < f(x, y)}|
+|{(x′, y′) ∈ U: f(x′, y′) = f(x, y) and x′ < x}|

Then σ: U → [0, m] is a measure-preserving map and f = f∗◦σ almost everywhere in U.

In the next lemma the function ψ defines a general bounded linear functional on q,
and it is shown that the supremum of such a functional relative to C(q0) is attained by
an element in RΩ(q0). We have already suggested thinking of the elements of R(q0) as
‘vertices’ of C(q0); Lemma 6 tells us that every ‘face’ of C(q0) contains such a ‘vertex’.

Lemma 6. Let Ω = Q× I be a rectangular domain where Q = (−α, α)× (−α, α) ⊂ R2

and I = (z0, z1) ⊂ R. Let q0 ∈ L2(Ω) and ψ ∈ L2(Ω), and let q∗0(·, z) and ψ∗(·, z)
be the increasing rearrangements of q0(·, z) and ψ(·, z) respectively on [0, α2], which
exist for almost every z ∈ I . Then there is a measurable function σ: Ω → [0, α2] such
that for almost every z ∈ I , the map σ(·, z): Q → [0, α2] is measure-preserving, and
ψ(·, z) = ψ∗(σ(·, z), z) almost everywhere in Q.

Further q̃(x, y, z) := q∗0(σ(x, y, z), z) for (x, y, z) ∈ Ω defines q̃ ∈ RΩ(q0) that realizes
the supremum of

∫
Ω
qψ relative to CΩ(q0).

Proof. For almost every z ∈ I , we have q0(·, z), ψ(·, z) ∈ L2(Q), and for any
rearrangement χ of q0(·, z) we have∫

Q

χ(x, y)ψ(x, y, z)dx dy 6

∫ α2

0

q∗0(t, z)ψ∗(t, z)dt; (12)

note that q∗0 , ψ∗ ∈ L2((0, α2)× I). The left-hand side of (12) defines a bounded linear
functional of χ; the inequality (12) therefore holds when χ belongs to the closed
convex hull of the rearrangements of q0(·, z). Now taking q ∈ CΩ(q0) we can set
χ = q(·, z) in (12) and integrate with respect to z to obtain∫

Ω

qψ 6

∫ z1

z0

∫ α2

0

q∗0(t, z)ψ∗(t, z)dt dz for all q ∈ CΩ(q0). (13)

We now construct q ∈ RΩ(q0) that realizes equality in (13). Define

σ(x, y, z) = |{(x′, y′): ψ(x′, y′, z) < ψ(x, y, z)}|
+|{(x′, y′): x′ < x and ψ(x′, y′, z) = ψ(x, y, z)}|.

Then σ: Ω → [0, α2] is a measurable function. Moreover Lemma 5 assures us that
for almost every fixed z, the map σ(·, z) is measure-preserving and satisfies ψ(·, z) =
ψ∗(σ(·, z), z). If we choose q̃(·, z) = q∗0(σ(·, z), z) then q̃ ∈ RΩ(q0), and for almost every z,∫

Q

q̃(x, y, z)ψ(x, y, z)dx dy =

∫ α2

0

q∗0(t, z)ψ∗(t, z)dt.

Now integrating with respect to z yields equality in (13) as desired. �

Lemma 7. Let Ω = Q× I be a rectangular domain where Q = (−α, α)× (−α, α) ⊂ R2

and I = (z0, z1) ⊂ R. Let q0 ∈ L2(Ω) and ψ ∈ L2(Ω). Suppose
∫
Ω
qψ attains its

maximum relative to RΩ(q0) at a unique element q̄. Then there is a real function ϕ
defined on R × I such that q̄(x, y, z) = ϕ (ψ(x, y, z), z) for almost every (x, y, z) ∈ Ω,
and such that ϕ(·, z) is increasing for almost every z ∈ I .
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Proof. Let ψ∗, q0 and σ be as in Lemma 6. Then ψ(x, y, z) = ψ∗(σ(x, y, z), z) and, by
uniqueness and Lemma 6, q̄(x, y, z) = q∗0(σ(x, y, z), z), for almost every (x, y, z) ∈ Ω.

Now for almost every z ∈ I , the functions q∗0(·, z) and ψ∗(·, z) are increasing on
[0, α2]. In order to show that q∗0(·, z) is almost everywhere an increasing function of
ψ∗(·, z), it will be enough to show that on any open interval where ψ∗(·, z) is constant,
q∗0(·, z) is constant also, for almost every z ∈ I .

Consider rational numbers r < s and let Z(r, s) denote the set of z ∈ I such that
ψ∗(·, z) is constant on the open interval (r, s) but q∗0(·, z) is non-constant on (r, s). Then
Z(r, s) is measurable; we show Z(r, s) has measure zero. Consider the possibility that
Z(r, s) has positive measure. Define

q̂(t, z) =

{
q∗0(r + s− t, z) if t ∈ (r, s) and z ∈ Z(r, s),

q∗0(r, s) if t /∈ (r, s) or z /∈ Z(r, s).

Then, for almost every z ∈ I , q̂(·, z) is a rearrangement of q∗0(·, z). Hence

q1(x, y, z) = q∗0(σ(x, y, z, ), z) for all (x, y, z) ∈ Ω
defines q1 ∈ RΩ(q0), and moreover the constancy of ψ(·, z) on (r, s) for z ∈ Z(r, s)
ensures that∫

Ω

q1ψ =

∫ z1

z0

∫ α2

0

q̂(t, z)ψ(t, z)dt dz =

∫ z1

z0

∫ α2

0

q∗0(t, z)ψ∗(t, z)dt dz =

∫
Ω

q̄ψ.

But q∗0(·, z) is increasing and non-constant on (r, s) for all z ∈ Z(r, s) hence q̂ differs
from q∗0 on a set of positive measure, hence q1 differs from q̄ on a set of positive
measure. This contradicts the uniqueness of the maximizer q̄. Hence Z(r, s) has zero
measure as desired.

Now let

Z =
⋃

r, s∈Q, r<s
Z(r, s)

which has zero measure, being a countable union of sets of zero measure (here Q
denotes the set of all rational numbers). Consider z ∈ I \ Z . If ψ∗(·, z) is constant
on an interval (p, q), then q∗0(·, z) is constant on (r, s) for all rationals r and s with
p < r < s < q, hence q∗0(·, z) is constant on (p, q). Therefore q∗0(·, z) = ϕ (ψ∗(·, z), z)
almost everywhere on [0, α2] for some increasing function ϕ(·, z); then by composing
with σ we obtain q̄(·, z) = ϕ (ψ(·, z), z) almost everywhere on Q.

Thus q̄(x, y, z) = ϕ (ψ(x, y, z), z) for almost all (x, y, z) ∈ Ω as desired. �
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Åkerstedt, H. O., Nycander, J. & Pavlenko, V. P. 1996 Three-dimensional stability of drift
vortices. Phys. Plasmas 3, 160–167.

Bassom, A. P. & Gilbert, A. D. 1998 The spiral wind-up of vorticity in an inviscid planar vortex.
J. Fluid Mech. 371, 109–140.

Benjamin, T. B. 1976 The alliance of practical and analytical insights into the nonlinear problems of
fluid mechanics. In Applications of Methods of Functional Analysis to Problems in Mechanics.
Lecture Notes in Mathematics, vol. 503, pp. 8–29. Springer.

Bourgeois, A. J. & Beale, J. T. 1994 Validity of the quasi-geostrophic model for large-scale flow in
the atmosphere and ocean. SIAM J. Math. Anal. 25, 1023–1068.

Burton, G. R. 1987a Rearrangements of functions, maximization of convex functionals, and vortex
rings. Math. Ann. 276, 225–253.

Burton, G. R. 1987b Vortex rings in a cylinder and rearrangements. J. Diffl Equat. 70, 333–348.



274 G. R. Burton and J. Nycander

Dritschel, D. G. 1998 On the persistence of non-axisymmetric vortices in inviscid two-dimensional
flows. J. Fluid Mech. 371, 141–155.

Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-Lagrangian numerical
algorithm for simulating fine-scale conservative dynamical fields. Q. J. R. Met. Soc. 123, 1097–
1130.
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